Dairy Genetics for Sustainable Productivity Improvement

Dairy Asia-Towards Sustainability - March 2015

Donald Nkrumah, PhD, MBA

Burkina Faso, Ghana, Mali, \& Nigeria

Bihar, Odisha, UP, \& Bangladesh
\square Dedicated to discovering and disseminating innovative approaches to increase smallholder productivity
\square POC investments in a few select geographies to grow smallholder livestock productivity

Genetics provides the greatest opportunities to sustainably improve productivity

Dairy Development at the Gates Foundation

\square Principles

* Dairy development is a route out of poverty
* Genetic improvement could help millions of poor farmers gain access to more productive animals
* Success comes from access to appropriate genetics plus ability and inputs to manage health, feeding, and general husbandry
\square Strategy:
* Increasing realized productivity through getting improved animals (crossbred cattle and high-producing buffalos) to farmers
* Accelerating and sustaining potential productivity through genomic and other tools for on-farm genetic gains
* Expanding smallholder access to input and output markets

Outline

\square Helping smallholders gain access to optimal dairy genetics

* Access to reliable breeding services
- Sorted semen and other reproductive technologies

Heifer multiplication systems - crossbreds, local dairy cows, and buffalos
\square Accelerating the rate of on-farm dairy genetic gain

* Optimizing performance of crossbreds
* Making use of existing DNA and historical phenotypic data
* Taking advantage of existing and emerging genomic tools
* ICT-based on-farm recording by smallholders
\square Developing the next-generation of precision breeding tools
* Genomic profiles of exotic bulls suited for crossbreeding
* Accelerating the rate of tropical adaptation

Optimizing smallholder productivity involves:

* Access to the right genotypes and breeding services (AI and planned natural mating)
* Access to input and knowhow to manage health, feeding, general husbandry, and markets.
\square Many opportunities for impact today:
* Access to advanced reproductive technologies - sorted semen
* Genomics-based determination of optimum breed composition
* Genomics-assisted planned natural mating of crossbreds
* Using existing DNA and phenotypic resources to select better AI bull genetics
* ICT platforms for on-farm data capture from smallholder systems
* Testing of existing and NEW chips and genomic tools to accelerate the rate of genetic gain
* Investments in NEW biotech tools to accelerate the rate of tropical adaptation

Optimum genotype depends on production environment

Indigenous breeds:

* Highly adapted to harsh conditions, but often little potential to increase milk yield under better feeding.
\square Crossbreds:
* Respond to better feeding with increased milk yield; moderately adapted, but low tolerance to endemic diseases
\square Exotic dairy breeds:
* Very high genetic potential for milk yield, but only expressed under the most favourable conditions; tend to be poorly adapted and very low tolerance to endemic diseases

Sustainably matching available feed resources to the genetic potential is a major challenge

The promise of crossbreeding

Productivity of non-descript local animals

* National averages tend to be higher in countries with fewer crossbreds because most are in the hands of commercial farmers
\square Crossbreds generally show higher realized yield under tropical smallholder dairy systems
\square Three fundamental challenges
\square How do you ensure reliable breeding services?
- What is the optimum management system?
\square What is the optimum breed composition...?

Ensuring access to reliable cattle development services

\square Al currently accounts for about 20\% of all bovine inseminations in India

* Near zero cost bull service
* Local semen @ \$0.30
* Imported regular semen @\$1.50 (~\$3.00 without Govt subsidy)
* Imported sexed semen @ \$12 per straw (~ 25.00 without Govt subsidy)

BAIF Godhan Project:

* A financially sustainable model for delivering cattle development services to poor farmers to increase productivity
* Empowering women through communitybased dairy interest groups (DIGs)

- Reached 212,000 farmers with 106,000 poor families, covering more than 4,000 villages in 14 districts
- More than 650,000 Als performed with conception rates of ~ 48\%
- More tha 2,300 Community-based Dairy Interest Groups (DIGs); 14,468 out of 23,918 members were women

\square Even with reliable AI delivery, most countries will probably only achieve 50\% maximum coverage
\square Today, nearly 80\% of breeding is through planned or unplanned natural mating to local and crossbred bulls
- Genotype of the bull is generally unknown
\square Use a low-cost genotyping assay for testing and certifying the breed composition of crossbred bulls...??
\square Create farmer awareness and hence a market for use of bulls
 of certified breed composition..??

Delivering reliable sorted semen AI

Switching from regular AI (\$0.30) to sexed semen (@ \12\$ 25)$ is a major economic challenge for smallholder farmers
\square Testing models for delivery of sorted semen to smallholders
\square Sexing Technologies; NDDB; BAIF; UNE, Others...
I On-farm conception rates

- On-farm sex ratios

E Economics of sexed semen use by smallholders

- Protocols to produce local bulls and buffalos sexed semen
\square Expecting increased availability of crossbred heifers, buffalo heifers, and high-producing local dairy heifers through sorted semen AI, IVF and ET.

X Chromosome carries
~3.8\% + DNA

What is the value of sexed semen...?

Sexed semen delivers $\mathbf{> 9 0 \%}$ calves of desired sex, but conception rate is often lower than normal semen

* Opportunity and need to produce F1 females from indigenous cows on large scale
\square Cowboy Math: A farmer with one cow
* An extra heifer for sale or to expand herd becomes available once every 2.4 yr with sexed semen vs 5.9 yr with normal semen.
* Sexed semen could double the impact of crossbreeding
* Number of female calves born
* Value of heifers (if sold) or the increase in milk production (if ownership is retained)

Poor smallholder starting with single cow over 10 years	Crossbred cow from regular semen-Al	Crossbred cow from sorted semen-Al
Lactation Yield, Kg / lactation	1,650	1,650
Extra heifers over 10 years ${ }^{1}$	2	4
Net Revenue (Over 10-Years) if extra heifers are retained	$\mathbf{\$ 3 , 6 8 5 . 8}$	$\mathbf{\$ 6 , 5 7 7 . 3}$

[^0]This farmer used regular Semen. He is not able to grow his herd as half of all calves born as male.

What is the optimum management system?

\square Large variations in productivity within and between genotypes
\square Probably reflects differential abilities of farmers to manage feeding, animal health, and general husbandry

[^1]This is why Ration Balancing is such a Brilliant Idea
\square New genomics-based applications

* Work with crossbred cattle owned by smallholders
* Record on-farm performance across agro-ecologies
* Use high-density SNP chips to determine breed composition
* Match performance to breed composition and production system

I. Time to answer: Short
II. Cost: Moderate to high
III. Accuracy: Higher than old approach
IV. Risk of not completing: Very Low
V. Relevance of results to smallholder system: Very High

Genetic group $1=12 \%$ exotic Genetic group $2=25 \%$ exotic Genetic group $3=50 \%$ exotic Genetic group $4=75 \%$ exotic Genetic group $5=95 \%$ exotic
\square On similar feed resources, mid-grade crossbred cows produced nearly 100\% more milk than high-grade cows
\square Mortality rates in high-grade ($\geq 75 \%$) exotic was 2.7 times higher than in other crossbreds

Percent Holstein-Friesian Genetics

| Manageme | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| nt | 0.25 | 0.50 | 0.62 | 0.75 | 0.875 | 0.969 |
| High-input | 1,396 | 2,953 | 1,401 | 2,981 | 2,821 | 3,147 |
| Low-input | 1,180 | 2,636 | 1,423 | 2,251 | 1,672 | 1,226 |

Accelerating genetic gains - making use of existing resources

\square Genetic improvement of milk productivity is yet to materialize

* Slow increase in crossbred yield from $5.65 \mathrm{~kg} / \mathrm{d}$ (1992) to $6.52 \mathrm{~kg} / \mathrm{d}$ (2007)
* Long history of highly effective crossbreeding from Military Farms
* Significant variation in performance of buffalos and crossbreds
- Holstein-X - Range: 8 to 26 Kg
- Jersey-X - Range: 5 to 20 Kg
- Murrah - Range: 5 to 17.5 Kg

\square Potential opportunities :

\square Utilize existing DNA from historical bull semen and performance data within and across regions?
\square Apply genomics to identify superior buffalo genetics

* Eg: Using the 90K Affy Axiom Buffalo Genotyping Array, which included Murrah and Jaffarabadi markers
\square Take advantage of the 770K cattle chip and existing or emerging cattle genomic equations to increase the impact of crossbreeding or for local dairy bulls

Accelerating genetic gains - ICT-based on-farm recording by smallholders

Fact: Most recording systems fail because they are run by geneticists, primarily for genetics objectives --- John P Gibson, UNE

Fact: Significant penetration of ICT systems across smallholder farms

* Possibilities for capturing on-farm data on economically relevant traits and variation in management systems from smallholders
* Potential to provide dynamic cow-management feedback to smallholder farmers to significantly optimize realized productivity

* Build a genomic profile of imported bulls whose daughters perform optimally under current smallholder systems
* Inform the way we import exotic bulls for crossbreeding?
* Inform efficient selection of crossbred or buffalo bulls for AI?
* Better targeting of genotypes to different agro-ecologies through Al systems?
* A functioning genetics and genomics computation and analytics
 systems for processing and using the information.

Accelerating genetic gains - applying multiple omics tools

1. On-farm performance

 recording and helping farmers to use that data to optimize productivity2. Developing "omics" tools to select the right bulls and target the right genotypes to production systems
3. Application of the resulting information to accelerate the rate of genetic gain

On-farm recorded economically relevant traits

Age at First Calving
Survival/Hardiness
Lactation Milk Yield
Disease tolerance
Reproductive Performance
Longevity
Number of lactations in herd life
Number of services per year herd life

Brazilian example shows genetic gains in tropical cows is possible

Addressing inefficiencies of conventional crossbreeding - Precision breeding..?

A major challenge with crossbreeding - significantly reduced tolerance to diseases

* Source of frustration for smallholder farmers who have adopted crossbreds
* Stimulation of Innate Immunity: Activation of the innate cellular receptors in calves could mitigate disease severity and restore full disease tolerance in crossbreds

Precision breeding:

* Specific and effective transfer of favorable genetic variants onto a more desirable genetic background using biotech approaches, without the drag of ill-adapted genetics associated with crossbreeding
* Cisgenesis: Precise within-species transfer of economically relevant genetic mutations from one individual to another of the same species.
- Could happen naturally, so they are less controversial..???
- Eg: within-species genome-editing, using specific nucleases (TALENs, CRISPRs).

Applications of precision breeding technologies:

* Acceleration of tropical adaptation via transfer of genes conferring tropical adaptability to high-producing exotic cattle (eg: SLICK genotype in cattle)
* Rapid introgression of desired alleles from elite animals into tropically-adapted animals

asnes
SNP SNP
$\stackrel{\text { snp }}{+}$

\qquad

 - Trag_{9} SNPs

TOGETHER, WE WILL REACH OUR GOAL OF RAISING MILLIONS OF

 FARMING FAMILIES OUT OF POVERTY

[^0]: ${ }^{1}$ Yrs/assumed Cl x Calving\% x Sex Ratio)-(Replacement Rate)

[^1]: Kenya: Realized lactation curves of improved cows achieved by different farmer types

