INTRODUCTION

During early lactation, the amount of energy required for maintenance of body tissues and milk production often exceeds the amount of energy available from the diet (Goff and Horst, 1997), thus forcing mobilization of body fat reserves to satisfy energy requirement. Simultaneously, daily nutrient intake is insufficient to meet demands for milk production and energy balance is negative (Bell et al., 1995). Due to depressed feed intake at the end of gestation, the period of negative energy balance often starts prior to calving (Van den Top et al., 1995). The negative energy balance in early lactation affects peak milk yield and overall lactation yield apart from causing delayed post partum ovarian activity (Garnsworthy and Webb, 1999). The level of non-esterified fatty acids (NEFA) increases in plasma as a consequence of body fat mobilization (Reid and Collins, 1980) and leads to hepatic lipodysis. Calcium salts of long-chain fatty acids have been shown to be effective as ruminally inert fat supplements for lactating cows (Palmquist, 1991 and 1994; Grummer, 1995) and is a good source for increasing energy density of the diet to improve productive performances.

Choline, a component of phospholipid and methyl donor, plays an essential role in very low density lipoprotein synthesis and thereby contributes to fat export from the liver. Fat metabolism can be improved with the help of choline for better energy production. This also helps in improving milk production. Evidence suggests that the dietary supply of choline in early lactating dairy animals may be inadequate, even though choline can be synthesized by the animals (Pires and Grummer, 2008). As dietary choline gets degraded rapidly in the rumen, it must be supplemented in the protected form (Atkins et al., 2012).
Therefore, rumen-protected form of choline has been developed to deliver choline to the small intestine for absorption. The aim of the present study was to determine the effect of bypass fat with or without rumen-protected choline (RPC) supplementation on milk production, milk composition and metabolic profile in crossbred cows.

MATERIALS AND METHODS

Trial Design and Treatments

This study was conducted during December to March months at Sarsa Farm, Anand district in Gujarat State, to evaluate the effect of supplementing bypass fat, with or without RPC on milk yield, composition, milk fatty acid profile and metabolic profile in early lactating HF crossbred cows. Crossbred cows (n=24), yielding 8-14 kg milk/animal/day were divided into three similar groups (I, II and III) of eight each, based on level of milk production (11 kg), fat (4.10%) and stage of lactation (2-3 weeks post partum). Cows in all the three groups were fed similar basal diet, comprising 14-15 kg oat green, 5-6 kg lucerne green and 4-5 kg wheat straw. Concentrate mixture was given according to the level of milk production, to meet the maintenance and milk production requirements (NRC, 2001).

No supplement was offered to cows in group I. However, cows in group II were supplemented bypass fat @ 100 g per animal per day and in group III along with 100 g bypass fat, 10 g RPC was also fed to each of the animals. Feed and feed supplements to all the animals in three different groups were offered for three months and observations on daily feed intake, daily milk yield, fat per cent etc. were recorded.

Sample Collection and Analytical Methods

The chemical composition of feeds and fodder offered during the trial period was carried out as per AOAC (2005). Feeds and fodder were also analyzed for neutral detergent fibre (NDF), acid detergent fibre (ADF), cellulose as per Goering and Van Soest (1970). The degree of rumen protection in bypass fat and RPC supplements were measured as per procedures of Gulati et al. (1993) and Sharma and Erdman (1989). The milk yield of individual cow was recorded in the morning and evening. Milk samples from each cow, pooled from each milking were collected weekly for analysis of fat, protein, total solids and SNF contents by using Milko-scan. Blood samples were collected by jugular venipuncture of each cow. The blood was allowed to clot and centrifuged at 1500 rpm for 10 minutes. The serum was then harvested for estimation of serum NEFA, triglycerides and cholesterol using commercially available test kits (Brishketu and Thakur, 2007).

Preparation of Fatty Acid Methyl Esters and Estimation by using Gas Chromatograph

Milk samples were also drawn for preparation of fatty acid methyl esters (FAME), during the trial period. Milk fat from 2 ml sample was saponified with ethanol and 5N sodium hydroxide, followed by acidification with 5N hydrochloric acid. Collected supernatant was then methylated using methanol. Methyl esters were extracted by adding 3 ml petroleum ether to the solution and removing a portion of the top phase into Gas Chromatograph (GC) vials. Individual fatty acids were determined by using a Perkin-Elmer Gas Chromatograph with flame ionization detector and fitted with BPX70 capillary column (50m x 0.32mm ID). Helium gas was used as a carrier and the detector temperature was set at 210°C (Ashes et al., 1992).

RESULTS AND DISCUSSION

Analysis of Feed and Feed Supplements

Analysis of feeds and fodder offered to animals in various groups is given in Table 1. Total fat content in bypass fat supplement was 84.10% and the degree of rumen protection was 79.60%. The predominant fatty acid in bypass fat supplement was palmitic acid (44.20%), whereas, levels of oleic, linoleic and linolenic acids were 38.10, 9.80 and 0.22%, respectively. The degree of rumen protection of choline chloride supplement was 71.30%. Since animals in all the three groups were fed similar ration, there was no significant difference in daily dry matter intake (DMI) amongst the groups (14.05, 13.80, 13.70 kg). Other workers too have reported that daily dry matter intake of the ration had remained unaffected on supplementing rumen bypass fat (Tyagi et al., 2009).

Milk Production and Composition

On supplementing bypass fat alone or with RPC in lactating crossbred cows, average increase in daily milk yield (kg) was 1.48 (P<0.01) and 1.77 (P<0.01) in groups II and III, respectively,
as compared to control. Average fat per cent increased by 0.54 (P<0.05) and 0.61 units (P<0.05) in groups II and III, respectively (Table 2). As choline is used for phospholipid synthesis, its supplementation facilitates lipid absorption and transport, thereby favoring milk fat synthesis. However, milk protein content remained unaffected amongst the groups. Positive effects of supplementing bypass fat on milk production and daily fat yield in lactating animals have been reported earlier (Barley and Baghel, 2009; Sirohi et al., 2010). Elek et al. (2008) and Lima et al. (2007) observed significant improvement in milk yield on supplementing RPC in dairy cows. It is also reported that RPC may improve the milk yield of dairy animals by elevating the export of triglycerides from the liver and by sparing methionine as a methyl donor. Collectively, the study indicated that further improvements in milk production in response to RPC supplementation may be attributed to a methyl donor sparing effect. Thus, enhanced intestinal supply of choline might have further improved milk production in crossbred cows.

Fatty Acid Profile of Milk

Calcium salts of fatty acids provide partial resistance from lipolysis and bio-hydrogenation in rumen by ruminal microbes and modify fatty acid profile of milk fat. Significant improvement was observed in poly unsaturated fatty acid (PUFA) content in groups II (@ 34.26%) and III (@ 37.45%). Total unsaturated fatty acids increased by about 15.29 and 15.71% in groups II and III, respectively. Long chain fatty acids (LCFA; C16:0 to C20:0) and mono-unsaturated fatty acids (MUFA; C14:1, C16:1 & C18:1) contents were higher in experimental groups as compared to control (Table 3). There are several reports indicating that supplementation of bypass fat in the ration of cows and buffaloes increased the proportion of unsaturated and long chain fatty acids of milk fat (Garg et al., 2008; Mahecha et al., 2008; Sajith et al., 2008).

NEFA - An Indicator of Energy Balance and Fat Mobilization

Presence of NEFA in blood is a direct indicator of energy balance and massive fat mobilization, suggesting more energy requirement than supplied in the diet. Changes in blood serum lipid profile in cows, subjected to the three feeding regimes are presented in Table 4. NEFA can be managed by optimizing the capacity of the liver to dispose of excess NEFA by exporting it back to the blood stream in the form of very low density lipoproteins (VLDL). In this process, the body uses VLDL for availing more usable energy for various body functions and health of the liver is maintained. For the formation of VLDL, the liver requires phospholipids, which are synthesized from choline. Choline supports

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentrate mixture</th>
<th>Oats green</th>
<th>Lucerne green</th>
<th>Wheat straw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>21.50</td>
<td>16.50</td>
<td>17.85</td>
<td>3.10</td>
</tr>
<tr>
<td>Ether extract</td>
<td>2.82</td>
<td>3.70</td>
<td>3.88</td>
<td>0.92</td>
</tr>
<tr>
<td>Acid detergent fibre</td>
<td>12.27</td>
<td>26.09</td>
<td>36.70</td>
<td>54.30</td>
</tr>
<tr>
<td>Neutral detergent fibre</td>
<td>19.98</td>
<td>39.80</td>
<td>48.51</td>
<td>68.80</td>
</tr>
<tr>
<td>Acid detergent lignin</td>
<td>1.45</td>
<td>0.80</td>
<td>7.53</td>
<td>6.10</td>
</tr>
<tr>
<td>Cellulose</td>
<td>9.10</td>
<td>25.90</td>
<td>26.85</td>
<td>45.90</td>
</tr>
</tbody>
</table>

Table 2: Effect of bypass fat with or without RPC on milk production and milk composition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter intake (kg/day)</td>
<td>14.05±0.14</td>
<td>13.80±0.10</td>
<td>13.70±0.12</td>
</tr>
<tr>
<td>Milk yield (kg/day)</td>
<td>10.01±0.42</td>
<td>11.49±0.36</td>
<td>11.78±0.46</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>3.60±0.14</td>
<td>4.14±0.16</td>
<td>4.21±0.15</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>3.55±0.10</td>
<td>3.58±0.13</td>
<td>3.57±0.14</td>
</tr>
<tr>
<td>SNF (%)</td>
<td>8.94±0.14</td>
<td>9.03±0.15</td>
<td>8.90±0.16</td>
</tr>
<tr>
<td>Total solids (%)</td>
<td>12.54±0.12</td>
<td>13.16±0.15</td>
<td>13.11±0.21</td>
</tr>
</tbody>
</table>

a, b, c Means with different superscript in a row differ significantly (P<0.05)
d, e, f Means with different superscript in a row differ significantly (P<0.01)
phospholipids synthesis and thus helps in VLDL formation. Mean serum NEFA level (mmol/l) was reduced to 0.52 and 0.47 in groups II and III, respectively, as compared to group I (0.62). Significant reduction in serum NEFA level has been reported on feeding RPC (Zahra et al., 2006).

At the beginning of the lactation cycle, the blood NEFA originating from mobilization of adipose tissue is elevated, mainly due to a negative energy balance. Increased concentrations indicate lipolysis, which occurs in response to increased energy demand. Level of blood serum triglycerides (mg/dl) increased on feeding bypass fat with and without RPC and cholesterol level (mg/dl) reduced (P<0.01). Cholesterol is a component of the serum lipoproteins and its concentrations in serum gives an indication of overall lipoprotein concentrations. Zahra et al. (2006) observed reduction in the level of cholesterol on supplementation of RPC to dairy cows. The results obtained in this study are also in agreement with the previous findings (Janovick Guretzky et al., 2006; Pinotti et al., 2004).

CONCLUSIONS

It can be inferred from the present study that supplementing bypass fat helps in improving milk and fat yield in crossbred cows, which can further be enhanced by fortification with rumen protected choline chloride.

ACKNOWLEDGEMENTS

The authors are grateful to the management of National Dairy Development Board of India, for providing necessary facilities and financial support to carry out this study.

REFERENCES

Dietary choline effects on milk and duodenal choline flow in dairy cattle. *J. Dairy Sci.* **71:**109-112.

