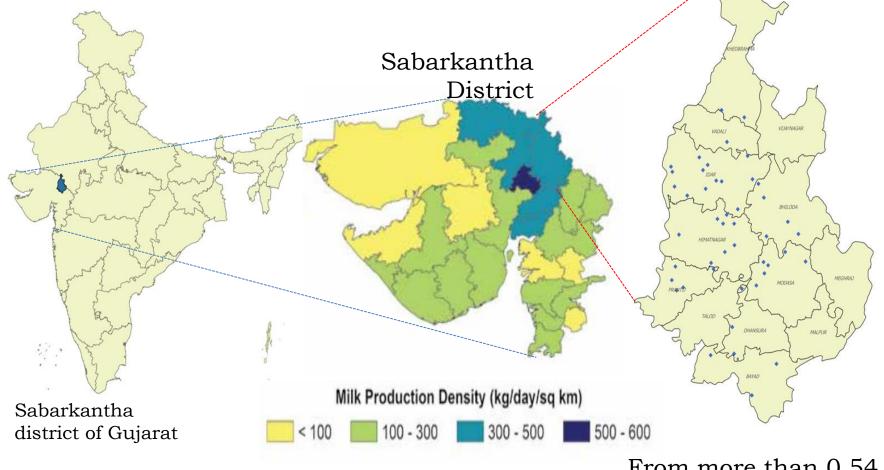
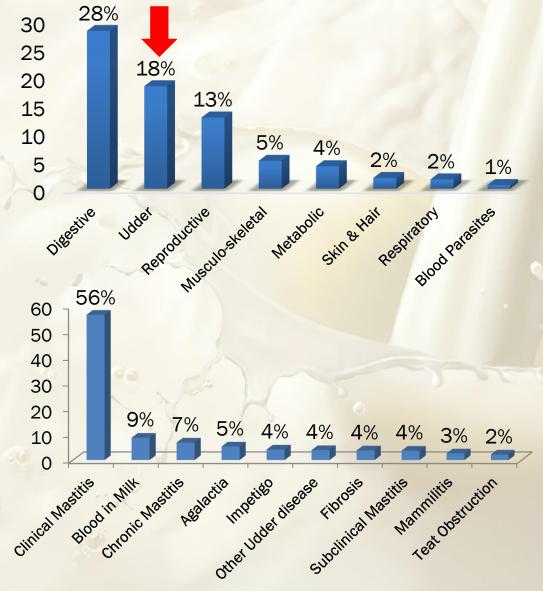


Reduction of drug residues in raw milk: management of bovine mastitis by ethno-veterinary medicine


Dr. S K Rana Head, Animal Health National Dairy Development Board Anand

Overview

- Distribution of diseases, Bovine mastitis
- Detection and treatment of sub-clinical mastitis
- Use of Ethno-veterinary medicine in mastitis control
- Expansion of mastitis control project
- Microbiological investigations
- Conclusions


Information Network For Animal Productivity and Health (INAPH) Area selected for initial study

From more than 0.54 million records

Major disease conditions in bovine recorded Sabarkantha Milk Union

Conditions	No
Digestive	141661
Udder	92088
Reproductive	64029
Musculo-	
skeletal	25130
Metabolic	20213
Skin & Hair	9648
Respiratory	8387
Blood	
Parasites	3291

Mastitis emerged as leading economically important disease condition in bovine and required attention

Bovine Mastitis

Inflammation of one or more quarters of the udder

Subclinical Mastitis

- ~ 90-95% of all mastitis cases
- > Udder/milk appears normal
- Elevated SCC
- Lowered milk output (~ 10%)
- Longer duration

Clinical Mastitis

- ~ 5 10% of all mastitis cases
- Inflamed udder
- Painful and swelling of udder
- Clumps and clots in milk
- Acute / Chronic type

Loses due to Mastitis in India

Annual losses due to mastitis in India- Rs 7165.51 crores (Bansal & Gupta, 2009)

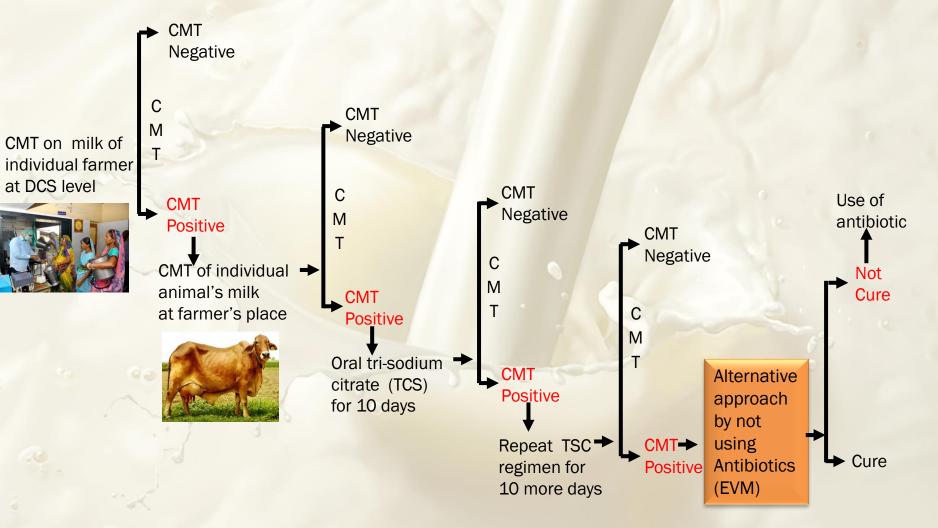
Alternative approach for detection & control of sub-clinical mastitis

Awareness creation

- Village meetings
- Extension material- calendars, posters, stick-ups, individual farmer meetings etc.

Identification of CMT positives

- CMT of pooled cow & buff milk at DCS
- CMT of individual animal's milk at farmer's place if pooled milk CMT positive
- Bi-monthly testing at DCS



Treatment of CMT positives

- Tri-sodium citrate regimen
- Alternative approaches/Antibiotic course to TSC non-responsive animals
- Management of chronically infected animals

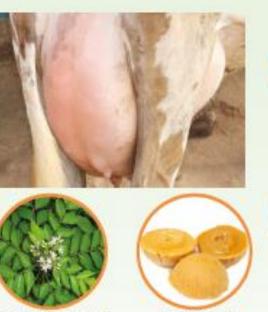
Work flow for management of mastitis by alternative approach -EVM

CMT Positivity of farmer's milk sample testing at DCS level

Cattle	СМТ	Percent	Buffalo	СМТ	Percent	Total Milk	СМТ	Percent
Milk	Positive	СМТ	Milk	Positive	СМТ	tested	Positive	СМТ
Tested		Positive	Tested		Positive			Positive
119637	35145	29	69486	12591	18	189068	47736	25

Effect of periodical CMT and TSC supplementation on mastitis and milk yield

- Sub-clinical mastitis cured by around 90 % as evident by CMT
- Effectively prevent the transformation of sub-clinical mastitis to clinical form
- Recorded an increase by 10-15% milk production in most of the animals that become CMT negative after TSC supplementation.
- Use of antibiotics for treatment of sub-clinical could be avoided

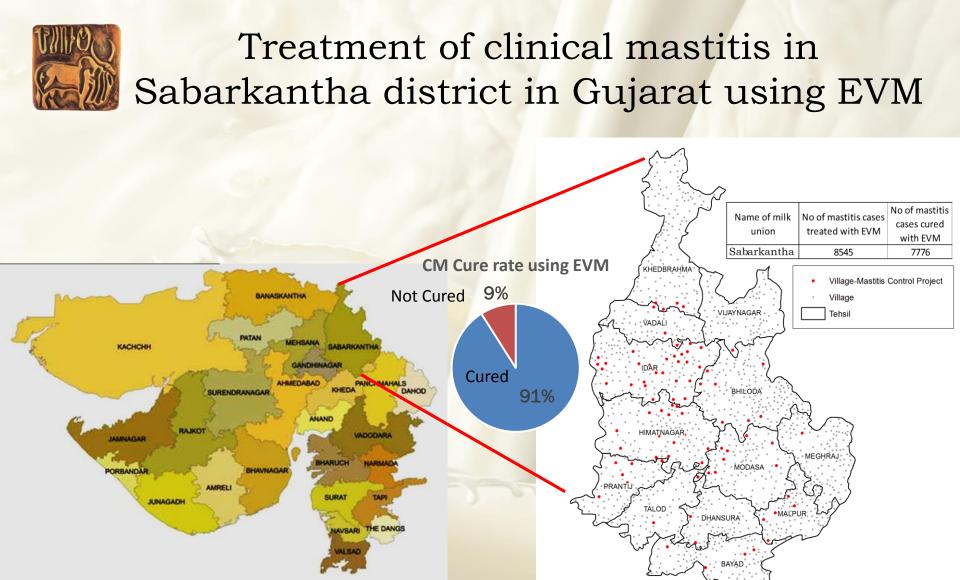

Alternative approach for management of clinical mastitis

Alternative approach for management of clinical mastitis

Mastitis (all types)

Jaggery

Curry leaves

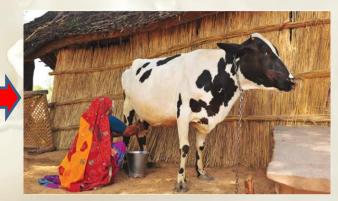

Botanical name	Proportion used
Aloe vera	250 gm
Curcuma longa (Turmeric)	50 gm
Calcium hydroxide	15 gm

Application of EVM paste on udder for treatment of clinical mastitis

i) Prepare a handful of paste watery by adding 150-200 ml of water.ii) Wash and clean the udder and apply the mixture throughout.iii) Repeat application 5-10 times a day for 5 days

Expansion of mastitis control project in total 27 districts 8 states

Expansion of mastitis control project : using an alternative approach

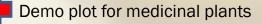

Involving

~1,04,400 Milk pourers

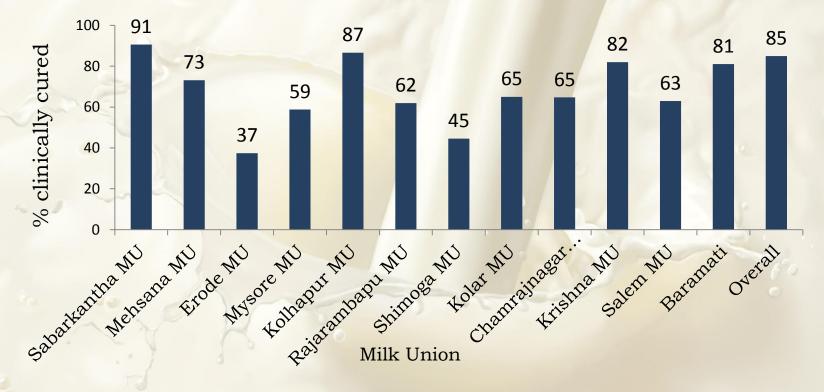
~1510 DCS

~1,78,000 in-milk Bovines in 27 Milk Unions

Components in expanded mastitis control project

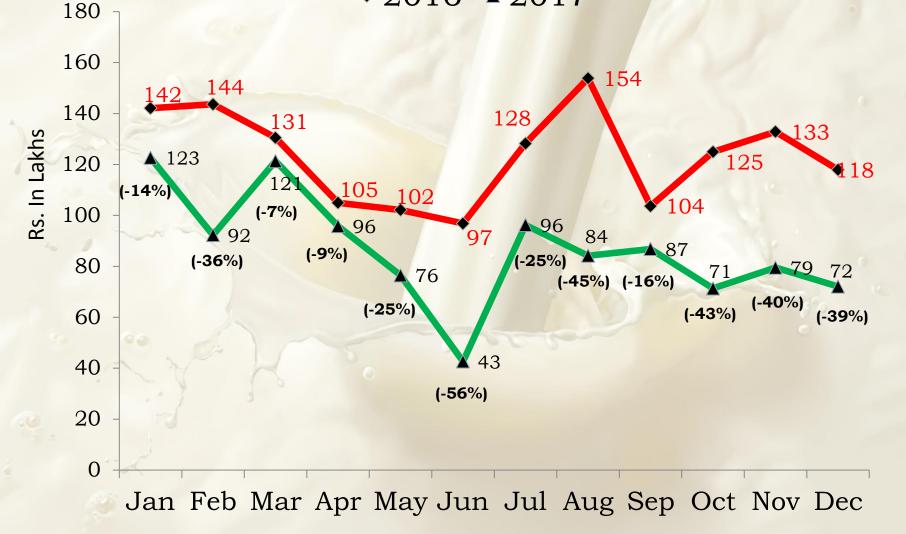

- 1. Training and extension
 - > Training on EVM on a mass scale & at milk Union level
 - Creation of medicinal plant plots at dairy plant / DCS
- 2. Mastitis detection and control
 - California Mastitis Test (CMT) at DCS and farmers' homestead.
 - Oral administration of Tri-sodium citrate
 - Use of EVM for treatment of mastitis cases rationalizing use of antibiotics.
 - Dry cow therapy
- 3. Monitoring
 - Testing of antibiotic residues in bulk milk using field test kits at DCS level
- 4. Impact analysis
 - Farmer awareness
 - Bulk milk CMT positivity
 - Antibiotic Residues in milk
- 5. Reporting : Web based reporting on all the above parameters

Training, extension, implementation and monitoring


Field training of veterinarians on EVM

Demonstration on use of antibiotics residue test kit

Cure rate of clinical mastitis using EVM in expanded project area



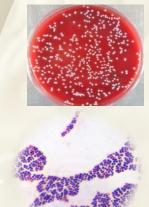
Total cases treated with EVM: 14,729 Total cases cured with EVM : 12,511(85%)

Medicine expenditure in 22 villages (~88 DCSs) in Kolhapur MU after implementation of EVM in 2017

⊷2016 **▲**2017

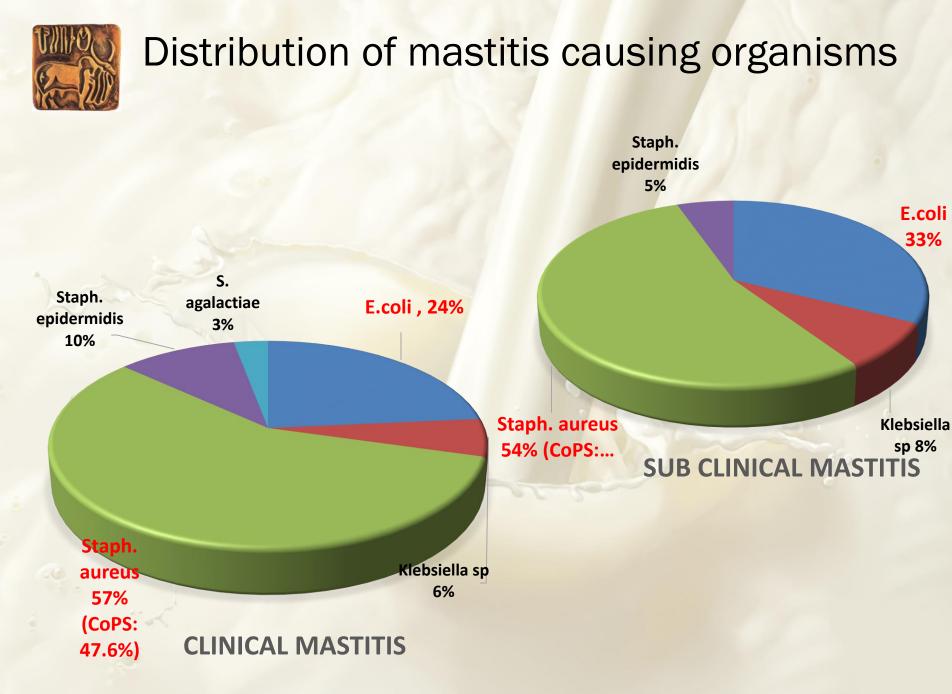
Microbiological investigations and antibiotic susceptibility

Microbiological investigations and antibiotic susceptibility

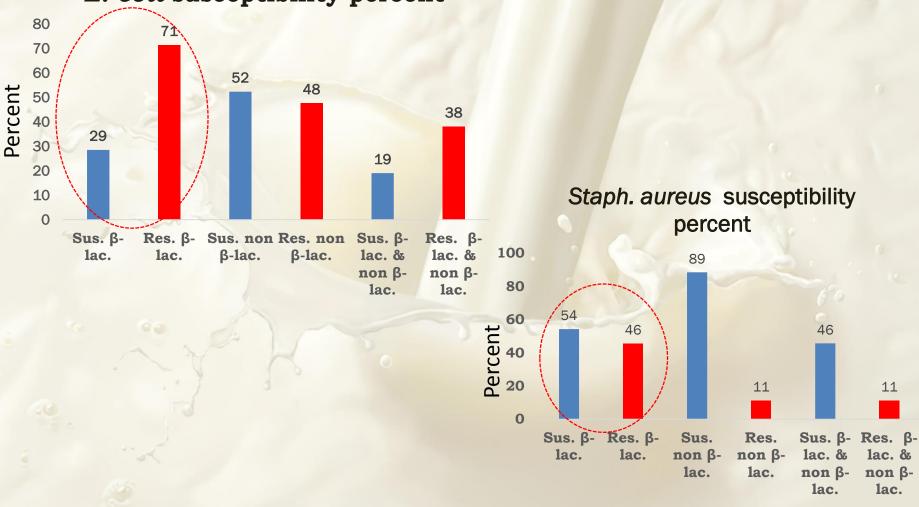

Cultural Isolation : Bacteria from mastitis milk

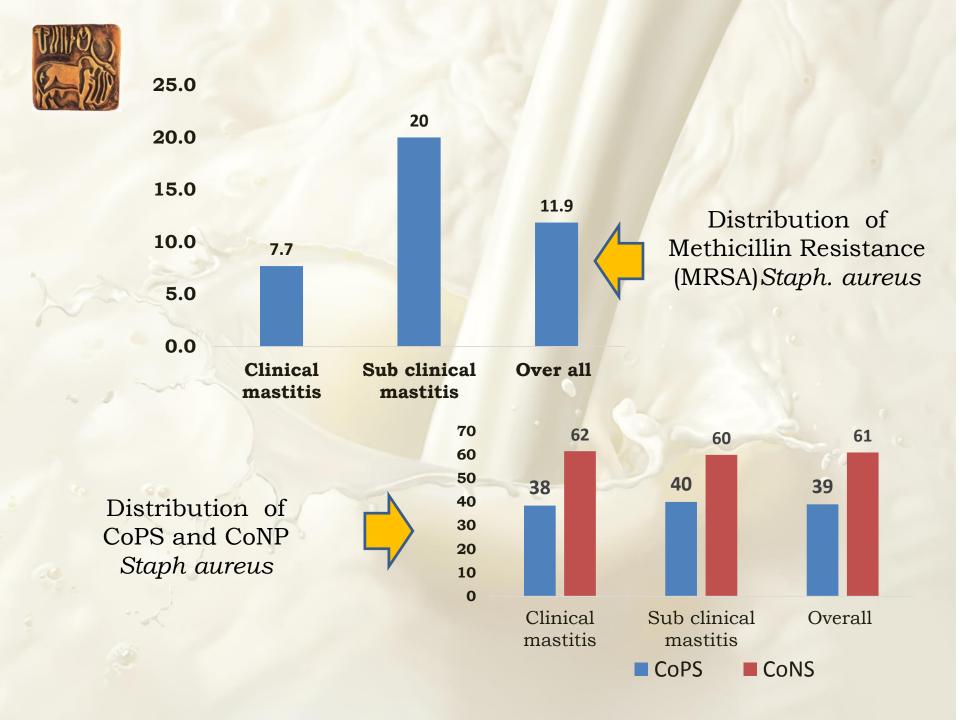
Identification of bacteria by Gram Staining

Identification of bacteria on differential media


Identification of mastitis pathogens

By multiplex PCR assay





Antibiotic sensitivity of bacterial isolates from mastitis cases

E. coli susceptibility percent

Genotypic characterisation of mastitis causing organism by WGS

Contraction of the second						
Species	Genotypic AMR profile identified (by ResFinder)	Predicted phenotype (Resistance to)	Detected phenotype (Resistant to)			
	Aminoglycoside					
	aph(3')-III	Kanamycin, Neomycin, Amikacin, Gentamicin B, Paromycin	Not Tested			
1 minus	ant(6)-Ia	Streptomycin	Streptomycin			
	aac(6')-aph(2'')	Gentamycin, Tobramycin, Amikacin	Gentamycin			
	Beta-lactam					
Staph. aureus	mecA	Methicillin	Methicillin, Cefoxitin			
(ID:	blaZ	Penicillin	Penicillin			
MS003G)	MLS - Macrolide, Lincosamide and Streptogramin B					
	mph(C')	Macrolide	Not Tested			
	msr(A)	Streptogramin B	Not Tested			
	Tetracycline					
1. 1.	tet(K)	Tetracylcine	Tetracycline			
	Trimethoprim					
	dfrG	Trimethoprim-resistant	Not Tested			

Genotypic characterisation of mastitis causing organism by WGS

Species	Genotypic AMR profile identified (by ResFinder)	Predicted phenotype (Resistance to)	Detected phenotype (Resistant to)			
	Aminoglycoside					
	aph(3'')-Ib	Kanamycin, Neomycin, Paromycin	Not Tested			
	aph(6)-Id	Streptomycin	Streptomycin Resistance			
	Beta-lactam					
E.coli	blaTEM-1B	Ampicillin	Ampicillin Resistant			
(ID: MSG051-B)	Fluoroquinolone					
мэсоэт-в)	QnrS1	Ciprofloxacin, Ofloxacin, Levofloxacin, Gatifloxacin, Moxifloxacin, Norfloxacin	Resistant to Ciprofloxacin & Ofloxacin			
-	Sulphonamide					
	sul2	Sulfamethoxazole	Not Tested			
	Tetracycline					
	tet(A)	Tetracycline	Tetracycline Resistant			

Anti-biogram of the mastitis causing organisms : cases clinically cured by EVM

Mastitis type	Causative	AMR Pattern in the causal organism isolated			
	organisms	Description			
	<i>E. coli</i> (n=11)	Susceptible to β -lactam and non- β -lactam group of Antibiotics			
		Resistance to β-lactam group	5		
		Resistance to non β-lactam group	4		
Clinical mastitis (<i>Clinically cured cases</i> =26; Isolates : 29)	Klebsiella Pneumonia (n=2)	Resistance to β-lactam group			
	Staph. aureus (n=13)	Susceptible to β -lactam and non- β -lactam group of Antibiotics	5		
		Resistance to β-lactam group	8		
		Resistance to non β-lactam group	3		
·· · · · ·	Staph epidermidis (n=2)	Resistance to β-lactam group	2		
		Resistance to non β-lactam group	1		
	S. agalactasia (n=1)	Susceptible to β -lactam and non- β -lactam group of Antibiotics	1		
Sub-clinical mastitis (Cases <i>Cured as evident</i> <i>by CMT</i> =8; Isolates : 11)	E. Coli (n=4)	Resistance to β-lactam group	4		
		Resistance to non β-lactam group	4		
	Staph aureus (n=7)	Susceptible to β -lactam and non- β -lactam group of Antibiotics	3		
		Resistance to β-lactam group	4		

Conclusion

- Combination of CMT and oral regimen of TSC could drastically reduce the incidence of sub-clinical mastitis
- EVM emerged as effective in control of mastitis irrespective of causative agents viz. E.coli, Klebsiella sp, Staph. aureus, Staph. epidermidis, S. agalactiae and antibiotic susceptibility pattern of the organisms
- EVM as an alternative, cost effective mastitis management approach is found to be highly successful and acceptable by the farmers
- These alternative approaches of mastitis control significantly diminish the use of antibiotics in mastitis treatment
- > Thus it minimizes the likelihood of antibiotic residues in raw milk as well as probabilities of development of anti microbial resistance

Acknowledgement : Team of worker

Dr. SK Rana

Dr. G K Sharma

Dr. Hari Kumar

Thank you for kind attention

Dr. Pankaj

Dr. Sagar

Dr. Vijay

