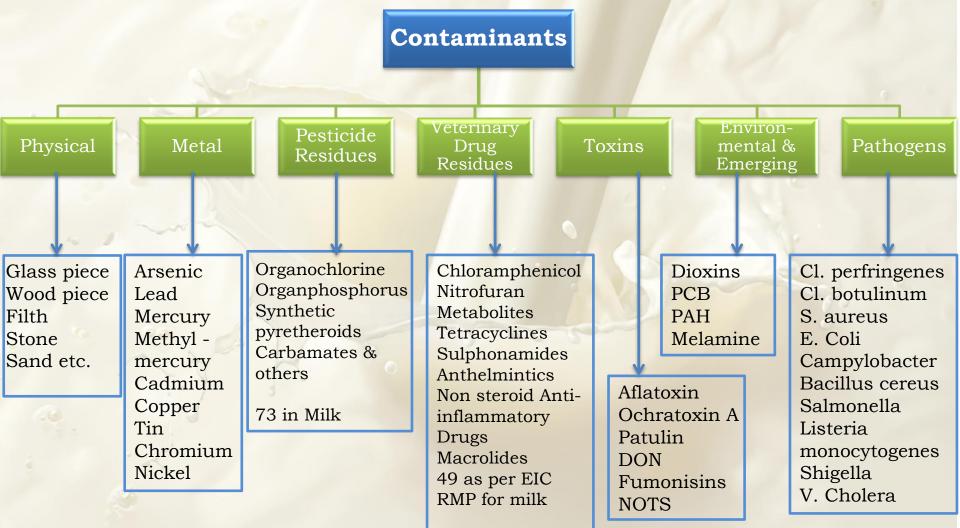


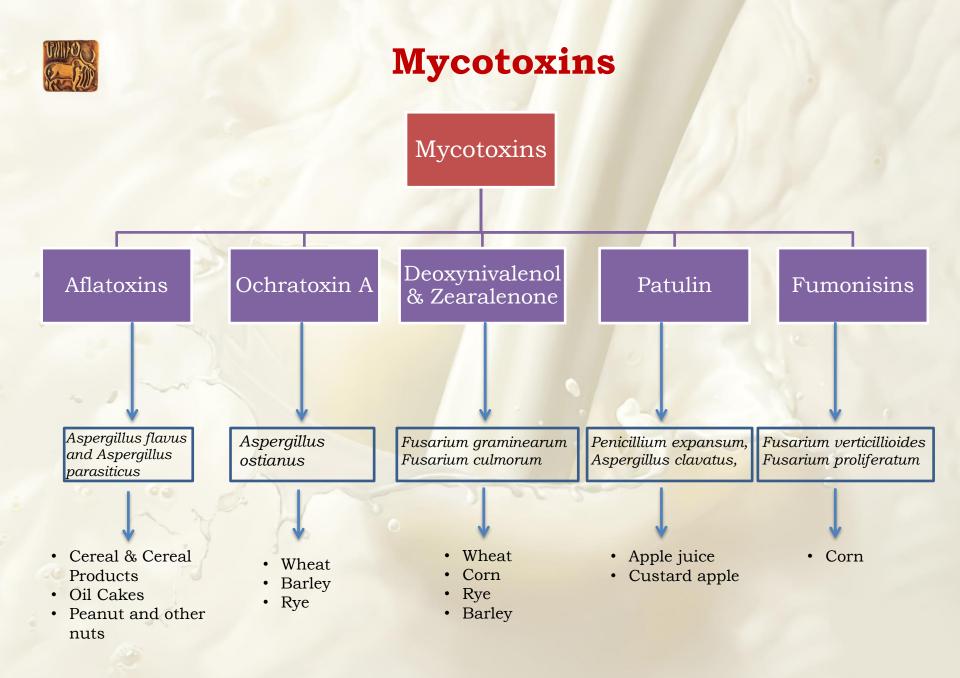
Methods of Estimation of Aflatoxins and Other Contaminants

Rajesh Nair Director (CALF) NDDB, Anand

Introduction

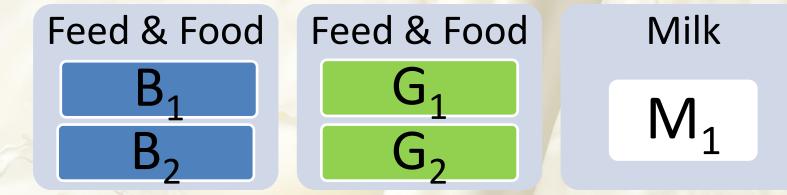
>Aflatoxin is a global food safety concern.


Concerns

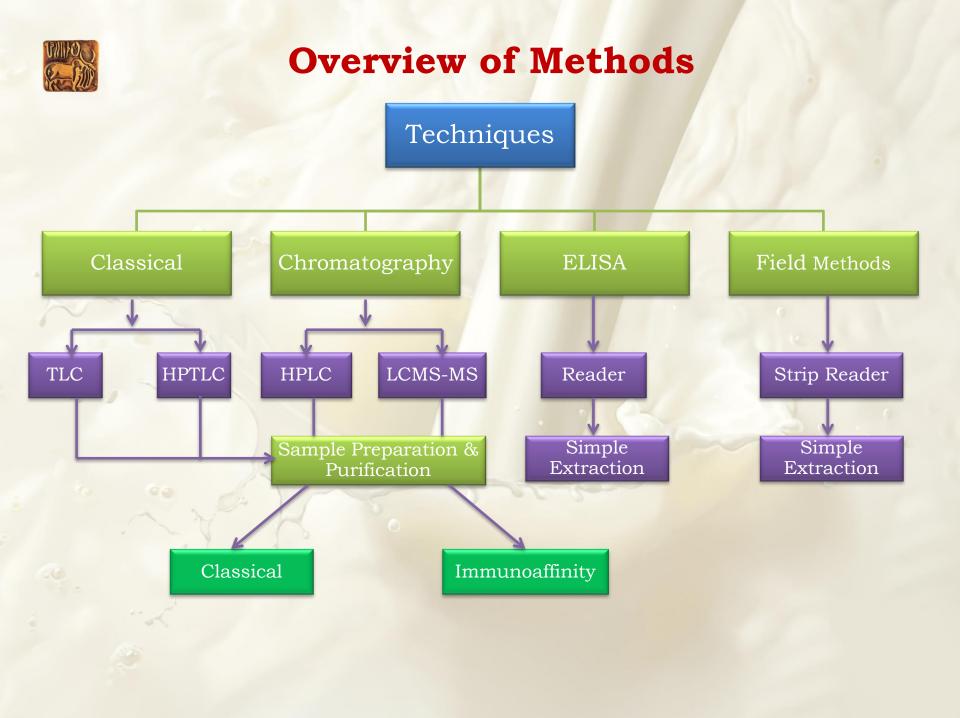

Technique Accuracy and precision of Technique Homogeneity Competence of the laboratory Reporting & Compliance

Feed and Food contaminants

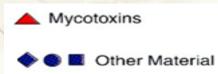
Feed and food contaminants can be majorly classified as physical, biological and chemicals.



Maximum Residue Limits (MRL)


S. No	lo Name of Name of the Product Contaminants		Limit (µg/kg)		
1 Aflatoxin		Cattle feed (IS 2052)	20		
		Cereal and Cereal Products	15		
	· Jam	Pulses	15		
12		Nuts Nuts for further processing Ready to eat	15 10		
	- and	Dried figs	10		
		Oilseeds or oil Oil seeds for further processing Ready to eat	15 10		
1	··	Spices	30		
2	Aflatoxin M1	Milk	0.5		
3	Ochratoxin	Wheat, barley and rye	20		
4	Patulin	Apple juice and Apple juice ingredients in other beverages	50		
5	Deoxynivalenol	Wheat	1000		

Types of Aflatoxin


- Aflatoxins B₁, B₂, G₁ and G₂ refer to toxins which give blue (B) or green (G) fluorescence under ultraviolet light.
- Aflatoxin M₁ is produced from B₁ in lactating animal/humans when contaminated material is consumed. Since it is found in milk it is designated as 'M'.

Importance of Sample Preparation (Immunoaffinity Column)

When sample containing (aflatoxin) is passed, aflatoxin binds to the antibodies

Column is washed with PBS or Water to remove remaining matrix particles, if any

SAMPLE

WASHING

Aflatoxin is extracted with Methanol which breaks down the structure of antibodies and releases aflatoxin. It is collected and analysed using technique like HPLC/LCMS-MS

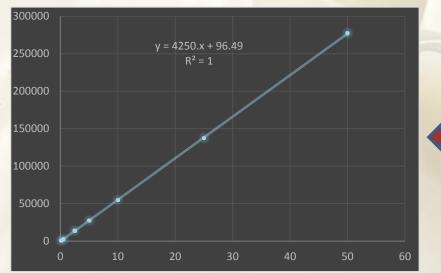
TLC & HPLC Technique

The process steps of TLC & HPTLCs are identical. The main difference between them is in the characteristics of the separation plate. HPTLC plates are based on optimized silica gel 60 with a significantly smaller particle size than used for classical TLC, TLC is qualitative and HPTLC is semi quantitative and equipment is involved.

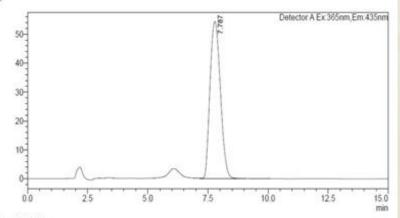
Advantages:

Cheaper compared to advanced methods

Limitation:


TLC is mostly qualitative and HPTLC is semi quantitative, this is not a common technique in food labs due to limitation in quantification.

HPLC Technique


HPLC

Kobra Cell

<Chromatogram>

<Peak Table>

Peak#	Ret. Time	Area	Height	Name	
1	7.787	1641314	54339	Aflatoxin	
Total		1641314	54339		

HPLC Technique

Advantages:

- High performance liquid chromatography provides fast and accurate aflatoxin detection results within a short time.
- The detection is as low as 0.025 μg/kg for Aflatoxin M1 in Milk and 5 μg/kg for Aflatoxin B1 in Feed using FLD can be achieved.

Limitation:

HPLC for aflatoxin analysis requires rigorous sample purification using immune affinity columns which is expensive.

LCMS/MS Technique

LC MS/MS

LCMS/ MS is one of the most advanced techniques for mycotoxin analysis and many labs are moving towards this technique which is particularly suitable for multi-toxin analysis.

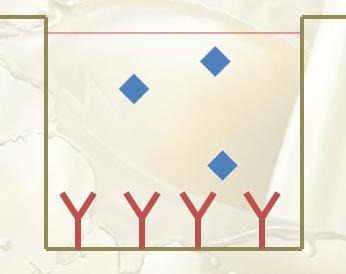
Advantages:

No requirement for derivatisation.
Multi toxin analysis leads to more efficient use of time.

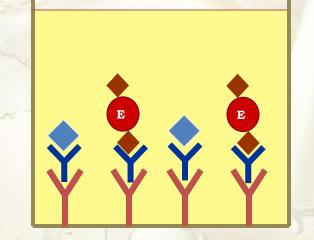
Limitation:

>LC-MS/MS is expensive equipment with high running cost which can only be operated by trained and skilled personnel.

Micro well coated with antigen specific antibodies



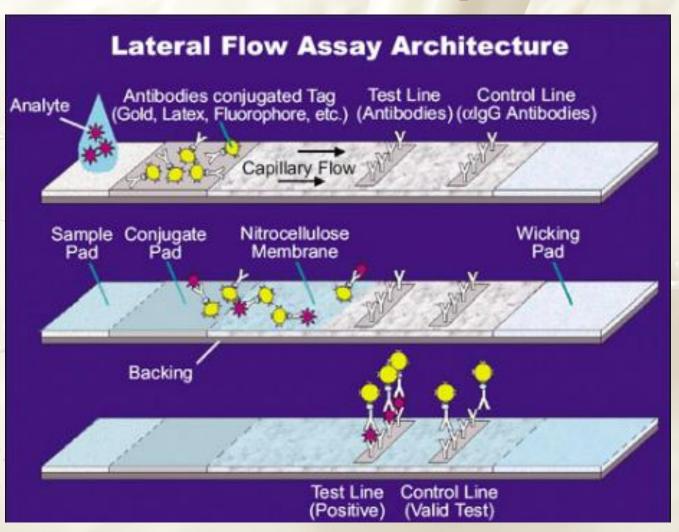
Antibody immobilized onto a solid support and captures an antigen as analyte (aflatoxin), which is subsequently detected in the assay.



Addition of Standard or Sample

Color is measured in ELISA Reader

Advantages:


It is possible to perform the test on a 96-well assay platform, which means that large number of samples can be analysed simultaneously.
ELISA kits are cheap and easy to use and do not require extensive sample cleanup.
Limitation:

> The ELISA technique is semi quantitative.

Strip Reading / Field Assay

Lateral Flow Technique

Strip Reading

Advantages

It is very fast -Just 3 min
Very Cost Effective

Limitation

- Semi-quantitative test
- Needs lot of Validation
- Difficult to meet regulatory requirements

Techniques for Other Contaminants

Techniques in Microbiology

Conventional Technique

- Requires 9-12 days for confirmation of pathogens.
- More Man-hours required for analysis

VIDAS (Pathogen screening system):

It is an automated, multi-parametric immunoassay testing system internationally used to test food products. It is validated by AOAC/AFNOR.

Advantages:

- Convention technique is cheap
- Result is within 2-3 days in VIDAS
- VIDAS can run many tests simultaneously.
- VIDAS is fully automatic and software controlled.

Limitation:

• VIDAS is expensive and conventional method is time consuming

Techniques in Residues

GC-MS/MS, LC-MS/MS

Pesticides, Antibiotics, Melamine and emerging contaminants

Techniques in Metals

ICP MS and ICP-OES

Metal contaminants and element of nutritional importance

Quality Assurance in Testing

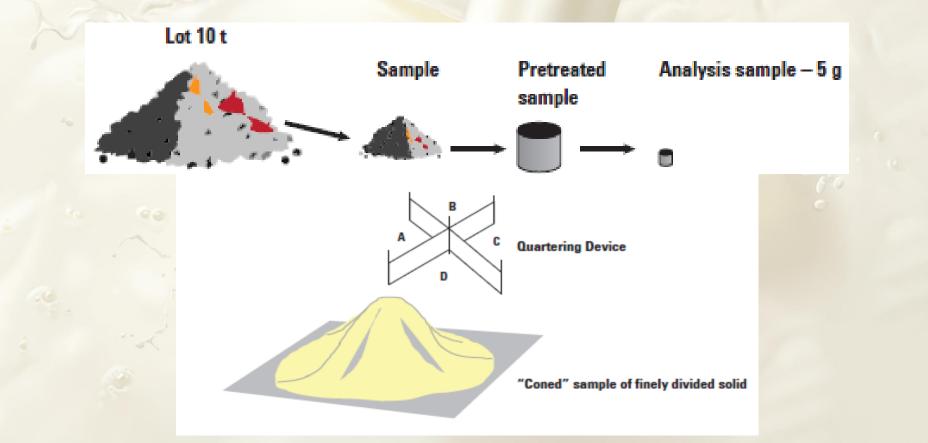
Quality control is a systematic process that controls the validity of analytical results. It checks the accuracy and precision of each method and matrix. External quality control \Box PT >Internal quality control Use of Certified reference material (CRM) and Reference standards Use of Control samples □ Retesting of old sample □ Spike recovery Positive Samples / Negative Samples

External Quality Control

Z Score	Result interpretation	Remark	
-2 to +2	Satisfactory	No action	
2-3	Questionable	Investigate	
More than 3	Unsatisfactory	System is out of control	

$$z - score = \frac{(\chi_i - \chi_{pt})}{\sigma_{pt}}$$

- x .: Result of participating laboratory
- x_{pt}: Assigned value (median)
- σ_{pt} : The standard deviation for proficiency testing used for the round (SDPA)


Z score of CALF for aflatoxin B1 and M1 in International Proficiency Testing programs

Year	Name of samples	Name of test	Date of Testing	Organizer	Z Score
2014	Milk Powder	Aflatoxin M1	March-May 2014	FAPAS, England	1.4
	Cornmeal	Aflatoxin B1	Jan 2016	APTECA-FAO, USA	0.65
2016	Cornmeal	Aflatoxin B1	10-Oct-2016	APTECA-FAO, USA	0.72
	Milk Powder	Aflatoxin M1	Oct-Dec 2016	FAPAS, England	-1.2
2017	Cornmeal	Total Aflatoxin	Feb-2017	APTECA-FAO, USA	-1.13
	Cornmeal	Aflatoxin B1	Feb-2017	APTECA-FAO, USA	-0.99
2018	Maize	Aflatoxin B1	Jan-March 2018	APTECA-FAO, USA	1.66
	Cornmeal	Aflatoxin B1	July 2018	FAO-Texas, USA	0.25
	Milk (residues)	Aflatoxin M1	31-Oct-18	DRRR- PT, Germany	0.33

Importance of Sampling

- Selective sampling & Representative sampling
- Selection of Sample Size
- Sample Homogenization

Uncertainty:

A parameter associated with the result of a measurement, that characterises the **dispersion of the values** that could reasonably be attributed to the measurand.

Aflatoxin in Feed : 20.0 ± 3.0 ppb The values can be between 17 to 23 ppb

Decision Rule: Mandatory as per ISO 17025:2017

- For non compliance or rejection with <u>low probability of</u> <u>false rejection</u> (Directive 96/23/EC)
- The start of rejection is at the MRL (Limit) + an amount "g" called guard band.

Decision Rule

MRL (Limit) i.e. 20 ppb

G is the guard band or Acceptance zone

Acceptance Zone

Rejection Zone

Importance of Accreditation

Implementation of ISO 17025 (NABL Accreditation) results into various improvements w.r.t. analysis

Acceptances of report across the globe by virtue MRA of NABL through APLAC and ILAC.

➢ 8 clauses and 29 requirements.

Risk assessment & Decision rule

Continual improvement

Thank You

